| Peer-Reviewed

Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.)

Received: 9 June 2016     Accepted: 24 June 2016     Published: 15 November 2016
Views:       Downloads:
Abstract

Heavy metals of acetate salts of lead, zinc, copper and mercury cause serious toxic effects on protein biosynthesis. These metal salts reduce the plasma protein content. A dose-response relationship is found to occur in this blood parameter in the experimental fish in comparison to the control group of fishes. Both groups are fed. Higher dose of those chemical agents are much responsive to cause harmful effects on fish plasma protein amount. All the heavy metals toxicity except zinc toxicity are shown to be continued (reduced) upto day 42 but the decrease in the said parameter is more marked with zinc salt on day 7 only. The present investigation is an attempt to evaluate the relationship of this haematological parameter with the physiological status among the heavy metal polluted fishes during chronic treatment.

Published in American Journal of BioScience (Volume 4, Issue 5)
DOI 10.11648/j.ajbio.20160405.12
Page(s) 64-73
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Environmental Pollution, Metal Toxicity, Fish, Plasma Protein, Long Term Treatment

References
[1] Banerjea, D. (2016). Environmental Pollution: Causes, effects and control, Sc. Cult. 82, 69-83.
[2] Javed, M. and Usmani, N. (2011). Accumulations of heavy metals in fishes, a human health concern, Int. J. Environ. Sci., 2, 659-670.
[3] Javed, M. and Usmani, N. (2012). Uptake of heavy metal in fishes by Channa punctatus from Sewag fed aquaculture pond of Pancthi, Aligarh, Global J. Res. Eng (C), 12, 27-34.
[4] Sevcikova, M., Modra, H., Slaninova, Z. and Svobodova, Z. (2011). Metals as a cause of oxidative stress in fish, A review. VeterenarniMedicina, 56, 537-546.
[5] Manivasakam, N. (1989). In: ‘Environmental Pollution’, National Book Trust, New Delhi, India, pp. 1-76.
[6] Shukla, O.P. (1990). Biodegradation for Environmental Management, Everyman’s Science, xxv, 46.
[7] Mondal, B. K., ChowdhuryT.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K.C. and ChakrabortyT.I., D. (1998). The Science of the Total Environment, 218, 185-201.
[8] Paul, S.C. (2001), Sectional Presidential Address on Environmental Hazards-A Bundle of Global Problems, 88th Ind. Sc. Cong. 3-39.
[9] Saifullah, S. M., Khan, S. H. and Sarwat, I. (2002) Distribution of nickel in a polluted mangrove habited of the Indus delta. Mar. Poll. Bull., 44, 551-576.
[10] Yang, H. and Rose, N. L. (2003). Distribution of Hg in the lake sediments across the U.K., SCI, Total Environ., 304, 391-404.
[11] Vutukuru, B. (2005). Acute effects of hexavalent chromium on survival, oxygen consumption, haematological parameters and some biochemical profiles of the Indian major carp, Labeorohita, Int. J. Environ. Res. Public health, 2, 456-462.
[12] Begum, A., Amin, M. N., Satoshi, K. and Kiyohisa, O. (2005). Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhona mrigala and Clarias batrachus from the fresh water Dhamnondi lake in Bangladesh, Food Chem., 93, 139-143.
[13] Shukla, V., Dhankar, M., Prakash, J. and Sastry, K. V., (2007) Bio accumulation of Zn, Cu and Cd in Channa punctatus, J. Env. Biol., 28, 395-397.
[14] Debarandara, S., Naddafi, K. Nazmara, A. and Ghaedi, H. (2010). Heavy metals (Cd, Cu. Ni, Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran, African J. Biotech., 9, 6191-6193
[15] Panigrahi A., (2014) Heavy metal toxicity, Everyman’s Science, XLVIII, NO 6, 418-423.
[16] Ray, P.K. (1984), Symposium on Metals, Environment and Safety, 71st Ind. Sc. Cong. 1-12.
[17] Paul, S.C., Dasmahapatra, A.K. and Medda, A.K. (1989). National Symposium on modern trends in Environmental Biology and seminar on Environment and Animal life, S-III, 38.
[18] Singha, D.K. and Mukherjee, A.D. (2000), Fundamentals of Environmental Studies, Visva-Bharati Pub., 12.
[19] Adhikari, S., Saha, R. and Gupta S.K. (2001). Heavy metal contamination of Sewage-fed fish, Laboerohita in eastern Calcutta,Sci. Cult., 67 (3-4), 115.
[20] Turkmen, A., Turken, M., Tepe, Y. and Akyurt, J. (2005). Heavy metals in three commercially valuable fish species from Iskenderun bay, Northern East Mediterranean Sea, Turkey, Food Chem. 91, 167-179.
[21] Karbassi, A. R., Bayati, I. and Moattar, F. (2006). Origin and chemical partitioning of heavy metals in riverbed sediment, Int. J. Environ. Sci. Tech., 3, 35-42.
[22] Chattopadhyay, M.K. and Grossari, H.P. (2010), Pollution by heavy metals: for-reaching consequences, Curr. Sc., 99, 1163.
[23] Chauhan, R. (2008), Water shortage “A Global Problem”, p33.
[24] Abbasi, S.A. and Abbasi, N (1996). Water and Water Pollution, EnviroMedia,Karad, Maharashtra, India 8-30.
[25] John, W.E. (2006), Environmental problems and policies, Arise Pub.andDistb. New Delhi, India, 104-105.
[26] MondalR.B. (2006). Water Resource Management, Concept Publishing Company, New Delhi-59, 74, 75, 102.
[27] Palmer, C.D. and Pula, R.W. (1994). Natural attenuation of hexavalent chromium in ground water and soils, USEPA, Ground Water Issue, U.A. Govt. print Office, Washington D.C. 57-72.
[28] WHO (1986). World Health Organization, Review of potentially harmful substances-arsenic, mercury and selenium, Reports and studies,28, 172.
[29] WHO (1990), Methyl mercury, World Health Organization, Environmental Health Criteria, 101, Geneva.
[30] Barghigiani, C. and Ranieri, De, S (1992). Mercury Content in different sizes of important edible species of the northern Tyrrhenian sea, Mar. Pollut, Bull, 24, 114-116.
[31] Voight, H.R. (2003). Concentration of mercury and cadmium in some coastal fishes from the Finnish and Estonian parts of the Gulf Finland, Proc. Estonian Acad. Sci. Biol. Ecol, 52, 305-318.
[32] Pandey, S. Kumar, R. Sharma, S. Naghpure, N.S. Srivastava, S.K. and Verma, M.S. (2005). Acute foxicity bioassays of mercuric chloride malathione on air-breathing fish, Channa punctatus Eco. Toxicol, Env. Sci., 61, 114-120.
[33] Benson, N.U., Essien, J.P., Williams, A.B. and Bassey, D.E. (2007). Mercury accumulation in fishes from tropical aquatic ecosystems in the Niger Delta, Nigeria, Curr. Sc., 92, 781-784.
[34] Topcuoglu, S. Kurbasoglu, C. and Gungor, N. (2002). Heavy metals in organism and sediments from Turkish coasf of the black sea, Environ. Int, 1069, 1-8.
[35] Luckey, T.D. and Venugopal, B.S. (1977), Metal Toxicity in Mammals, Vol. 1, P. 1- 149.
[36] Kodama, M., Ogata, T. and Yammamori, K. (1982). Acute Toxicity in Zinc in To Rainbow trout, Salmo gairdneri, Bull. Jap. Soc. Fish, 48, 1055-1058.
[37] El Damendash, F.M. and Elagamy, E.I. (1999) Biological effects in Tilapia nilotica fish as indicator of pollution by cadmium and mercury Intl J. Envron Health Res. 9, 89-97.
[38] Abreu, S.N., Pereira, E., Vale, C and Duarta, A.C. (2000) Accumulation of mercury in seabass from a contaminated lagoon (Ria de Avero, Portugal), Mar. Pollut, Bull, 40, 293-297.
[39] Wepener, V. Van Vuren, J. H. J. and du Prez H.H. (2001). Uptake and distribution of a copper, iron and zinc mixture in gills, liver and plasma of fresh water teleost, Tilapia sparrmanii, Water, 27, 99-108.
[40] Panigrahi, A. (1992). Physiological studies on the effects of some Environmental Pollutants on Fish, Ph.D. Thesis, University of Calcutta, India.
[41] Karan V., Vitotovic, S.; Tutundzic, V. and Poleksic, V. (1998). Functional enzymes activity and gill history of carp after copper sulphate exposure and recovery, Ecotoxicol, Environ, Saf., 40, 49-55.
[42] Yang, J.L. and Chen, H.C. (2003). Serum metabolic enzyme activities and hepatocyte ultrastructure of common carp after gallium exposure, Zoological Studies, 42, 455-461.
[43] Abou El-Naga, E.H., El-Mosellhy, K.H. and Hamed M.A. (2005). Toxicity of cadmium and copper and their effect on some biochemical parameters of marine fish Mugilseheli, Egyptian J. Aquatic Res., 31, 60-71.
[44] Banerjee, T.K. and Devi, R. (2007). Toxicopathological impact of sub-lethal concentration of lead nitrate on the aerial respiratory organs of MurrelChanna striate (BlochPiscus), Iran J.Enrviron. Health, Sci, Eng, 4, 249-256.
[45] Strmack, M. and Braunbeck T. (2000). Isolated hepatocytes of Rainbow trout Oncorhynchus mykiss as a tool to discriminate between differently contaminated small river system, Toxicol In Vitro, 14, 161-377.
[46] Khangarot, B.S, Durve, V.S. and Rajbanshi, V.K. (1981). Toxicity of interactions of zinc-nickel, copper-nickel and zinc-nickel-copper to a freshwater teleost, Labistes reticulates (Peters), Acta.hydrochimhydrobiol., 9, 495-503.
[47] Abdullah, S., Javed, M. and Javid, A. (2007). Studies on acute toicity of metals to the fish (Labeorohita) Int. J. Agnicult, Biol., 9, 333.
[48] Revis, N. W., Major, T.C. and Horton, C.Y. (1980). The effects of calcium, magnesium, lead or cadmium on lipoprotein metabolism and atherosclerosis in pigeon, J. Environ. Pathol. Toxicol., 4, 293-304.
[49] Akahori, A., Gabryelak, T., Jozwiak, Z. and Gondko, R. (1999). Zinc induced damage to carp (Cyprinus carpio L.) erythrocyte in vitro, Biochem. Mol. Biol. Int., 47, 89-98.
[50] Karuppasamy, R. (2000) impact of phenylmercuric acetate (PMK)on the biomodal respiration in an air breathing fish Channa punctatus (Bloch), J. Environ. Pollut., 7, 287-293.
[51] Almeida, J., Novelli, E., Dal Pai Silva, M. and Jumor, R. (2001). Environmental Cadmium exposure and metabolic responses of the Nile tilapia Oreochromis niloticus, Environ. Pollut., 114, 169-175.
[52] Joshi P.K., Bose, M. and Harish, D. (2002). Hematological changes in the blood of Clarias batrachus exposed to mercuric chloride, J. Ecotox. Environ. Monit., 12, 119-122.
[53] Atli, G. and Canli, M. (2007). Enzymatic responses to metal exposure in a fresh water fish Oreochromis niloticus, Comp. Biochem. Physiol., C. Toxicol. Pharmacol., 145, 282-287.
[54] Zaki M. A.,Moustafa, S., Rashad, H. and Sharaf, N. (2008). Assesment of the hazardous effect of lead pollution on Oreochromis niloticus including haematological, biochemical and immunological parameters, Am. Eurasian J. Agric. Environ. Sci., 3, 91-95.
[55] Kamaruzzaman, B. Y., Ong. M. C. and Rina, S. Z. (2010). Concentration of Zn, Cu and Cd in some selected Marine Fishes onthe Pahang coastal waters, Malaysia, Am. Z. Appl. Sc., 13, 309-314.
[56] Hodson, P. V. (2011). Temperature effects on lactate-glycogen metabolism in zinc intoxicated Rainbow trout (Salmo gairdneri), J. Fish. Res. Board Can., 33, 1393-1397.
[57] Saroch, J. D., Nisar, H., Shrinivastav, R. Qurashi, T. A. and Manohar, S. (2012). Hematological studies of mercuric chloride affected fresh water catfish Clarias gariepinus fed with Spirulina, J. Chem. Bio. Phy. Sci. B, 2, 1862-1869.
[58] Cogun, Y. H. and Sahin, M. (2013). The effect of lead and zeolite on haematological and some biochemical parameters in Nile fish (Oreochromis niloticus), Curr. Prog. Biol. Res., 277-286.
[59] Gabryelak, T, Filipick, A. and Brichon, G. (2000). Effects of zinc on lipids of erythrocyte from carp (Cyprinus carpio L.) acclimated to different temperature, Comp. Biochem. Physio., Part C 127, 335-343.
[60] Vinodini, R. and Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp), Int. J. Environ. Sci. Tech., 5, 179 -182.
[61] Vinodini, R. and Narayanan, M. (2009). Changes of antioxidant enzymes in common carp (Cyprinus carpio L.) after heavy metal exposure, Turk. J. Vet. Anim. Sci., 3, 273 -278.
[62] Panigrahi, A., Dasmahapatra, A. K. and Medda, A. K. (2011). Toxicological impact of some heavy metals on a serum enzyme activity, ICMSP 100, University of Calcutta, W.B., India, LL1, p21.
[63] Salman J. M., Al-Mamoori, A. M.J., Al-Saadi, A.H. and Al-Terchi, M.N. (2012). DNA damage in common carp fish (Cyprinus carpio L.) induced by acute exposure to copper and cadmium, World App. Sc., J., 20, 679-682.
[64] Javed, M. and Usmani, N. (2014). Impact of heavy metal toxicity on hematology and glycogen status of fish: A review, Proc. Natl. Acad. Sci., India, Sect B, Biol. Sci., 11 pages.
[65] Arya. A. (2014) Evaluation of biochemical and histochemical changes following the combined treatment of mercury and cadmium in a fresh water catfish, Clarias batrachus (Linn), Int. J. Pharmacy and Pharmaceutical. Sc., 6, 356-358.
[66] Mathers, E. M., Houlihan, D. F., Mc. Carthy, I. D. and Burren, I. J. (1993). Rates of growth and protein synthesis correlated with nucleic acid content in fry of rainbow trout, J. Anim. Physiol. Anim. Nutr., 88, 275-287.
[67] Canli M. (1996). Effects of mercury, chromium and nickel on glycogen reserve and protein levels in tissues of Cyprinus carpio, Turk. J. Zool., 30, 161-168.
[68] James, R.,Sampath, K. and Alagurathinam, S. (1996). Effects of lead on respiratory enzyme activity, glycogen and blood sugar levels of the teleost Oreochromis mosambicus (Peters) during accumulation and depuration, Asian Fish Sci., 9, 87-100.
[69] Kazlauskiene, N. and Vosyliene, M. Z. (1999). Peculiarities of the physiological responses of rainbow trout to copper, Acta. Zoo. Litua. Hydro., 9, 1392.
[70] Kakkar, P. and Jaffery, F. N. (2005). Biological markers for metal toxicity, Environ. Toxicol, Pharm., 19, 335-349.
[71] Bedii, C. and Kanan, F. (2005). The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L. 1758), Turk. J. Vet.Anim. Sci., 29, 113-117.
[72] Abdel-Tawwb, M., Mousa, M. and Abbass, F. (2007). Growth performances and physiological response of African catfish, Clarias gariepinus (B) fed organic selenium prior to the exposure to environmental copper toxicity, Aqucult., 272, 335-345.
[73] Vinodini, R. and Narayanan, M. (2008). Effects of heavy metals induced toxicity on metabolic biomarkers in common carp (Cyprinus Carpio L.), Int., J. Sci. Technol., 2, 192-200.
[74] Ozgur, F., Cogun, H. Y., Yuzererogin, T.A., G. K. G. Ozge, Kargin, F. and Koleman, Y. (2011). A comparative studies on the effects of a pesticides (Cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus, Fish Physol. Biochem., 97, 657 666.
[75] Tripathi, S. Mishra, B. B. and Tripathi, S. P. (2012). Effect of heavy metal cadmium sulphate on the toxicity and biochemical parameters of reproductive cycle of ColisaFasciatus, Researcher, 4, 65-68.
[76] Haider, G. (1977). Damages to red blood picture by heavy metals, Methoden Toxizitaet Spruef. Fischen; Situaet. Beurteilung, Ber. Kollog., 113-116.
[77] Buchet, J.P., Lauwerys, R., Roels, H. and Bernerd, A. (1980). Relationship between exposure to heavy metals and prevalence of renal dysfunction, Arch. Toxicol., Suppl. 4, 215-218.
[78] Oskarsson, A. and Fowler, B. A. (1987).Alteration in renal heme biosynthesis during metal nephrotoxicity, Ann. N.Y. Acad. Sci., 514, (Mech. Chem, Induced prophyrinopathies), 268-277.
[79] Zikic, R. V., Stajn, A. S., Ognjanovic, B. I., Pavlovic, S. Z. and Saicic, Z. S. (1997). Activities of superoxide dismutase and catalase in erythrocyte and transaminase in plasma of carps (Cyprinus carpio L.) exposed in cadmium, Physiol. Res., 46, 391-396.
[80] Coppo, J. A., Mussort, N. B. and Fioranelli, S. A. (2001). Physiological variation of enzymatic activities in blood of bull frog, Rana catesbeiana, (Shaw, 1820), Rev. Vet., 12/13, 22 -27.
[81] Levesque, H. M., Moon, T.W., Campbell, P. G. C. and Hontela, A. (2002). Seasonal variations in carbohydrate, lipid metabolism of yellow perch, Percafiavescens: Chronically exposed to metals in the field, Aqua Toxicol., 60, 257-267.
[82] Oner, M., Atli, G. and Canli, M. (2008). Changes in serum biochemical parameters of fresh water fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposure, Environ. Toxicol. Chem., 27, 360-366.
[83] Said, A. K., Ferencz, A., Nemcsok, J. and Hermesz. E. (2010). Expression of heat shock and metallothionein, genes in the heart of common carp (Cyprinus carpio): Effects of temperature shock and heavy metal exposure, Acta. Biol. Hung., 61, 10-23.
[84] Lowry, O. H., Rosenbrouh, W. S., Farr, A. and Randall, T. (1951). Protein measurement with folin-phenol reagent, J. Biol. Chem., 193, 265-275.
[85] Rajamanickam, V. and Muthuswamy, M. (2008). Effect of heavy metals induced toxicity in metabolic biomerkers in common carp (Cyprinus carpapio L.) Mj. Int. J. Sci. Tech., 2, 192-200.
[86] Muhammad, A., Iqbal, R., Rana, S. A., Athar, M. and iqbal, F. (2006). Effect of feed, cycling on specific growth rate, condition factor and RNA / DNA ratio of Labeo rohita, African J. Biochem., 5, 1551-1556.
[87] Buckley, L.J. and Bulow, F. J. (1987). Techniques for the estimation of RNA, DNA and protein in fish, In:R.C. Summerfelt and G.E. Hall, Eds. The age and growth of fish, The Iowa State University Press, Ames, 345-354.
[88] Jia, X., Zhang, H. and Liu, X. (2011). Low level of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color., Fish Physiology Biochemistry, 37, 97-103.
[89] Cok, I., Ulutas, O. K.,Okusluk, O, Durmaz, F. and Demir, N. (2011). Evaluation of DNA damage in common carp (Cyprinus carpio L.) by Comet assay for determination of possible pollution in Lake Mogan (Ankara), The Scientific World Journal: TSW Environment, 11, 1455-1461.
[90] Garavini, C., Martelli, P., Seren, P., Caldeo, F. and Villani, L. (1979). Effect of lead and zinc on the erythropoiesis of cat fish,Rivista Di Biologica, 72, 83-90.
[91] Krzysztof. G. (1992). Structural changes of proteins in fish red blood cells after copper and mercury treatment, Arch. Environ. Contam. Toxicol., 33, 426-430.
[92] Haeinen, M.J. (1977). In ‘Dyserythropoieses’ (S.M. Lewis & R.R. Vermilghen, eds.). Acad. Press. London, New York, San Francisco, PP. 316-337.
[93] Nakada, S., Nomoto, A. And Imura, N. (1980). Effect of methylmercury and inorganic mercuryon protein synthesis in mammalian cells,Ecotoxicology and Environmental Sefety, 4, 184-190.
[94] Salem, M. F. I. (2003) Effects of cadmium, copper and lead contamination on growth performance and chemical composition of Nile Tilapia, Mansoura University Journal of Agricultural Science, 28, 7209-7222.
[95] Mary, J. R. A., John, M. M. C., Uthiralingam, M. and Azhaguraj, R. (2011). Quantitative variation of protein in tissues of a fresh water fish Clarias batrachus exposed to mercury and chromium, Int. J. Curr. Res., 13, 230-236.
[96] Habib, S. A. and AbouShehattaSamah, A. M. (2013). Effect of many metals pollution on protein biosynthesis in cat fish, J. Water Resource and Protection, 5, 555-562.
[97] Saxena, M., Saxena H. M., Sangha, G. K. and Kaur, K. (2008). Effect of heavy metal pollution of water on total plasma proteins and serum protein profiles of common carp fish (Cyprinus carpio). Internet J. Vet. Med., 5, 2.
[98] Bolawa, O. E. and Ghenle, G. O. (2013). Effect of consumption of heavy metals contaminated fish (Tilapia oreochromis) on metabolic parameters in Rabbits, Int. J. App. Biol. Pharmc., 317-321.
[99] Neff, J. M. (1985). Use of biochemical measurement to detect pollutant mediated damage to fish, ASTM Spec. Tech. Publ., 854, 155-183.
[100] Kapila, M. and Ragothaman, G. (1999). Mercury, Copper and Cadmium induced changes in the total protein level in muscle tissues of an edible estuarine fish boieoopthalmusdessumieri, Cuv. J. Environ. Biol., 20, 231-234.
[101] Adami, G. M. Beribieri, P., Fabiani, M., Piselli, S., Predonzani, S. and Reisenhofer, E. (2002). Levels of cadmium and zinc in hepatopancreas of reared Mytilusgalloprovincialis from the gulf of Trieste (Italy), Chemosphere, 48, 671-677.
[102] Filipovic, V. and Raspor, B. (2003). Metallothionein and metal levels in cytosol of liver, kidney and brain in relation to growth parameters of Mullussurmuletus and Liza aurata from the Eastern Adriatic Sea, Water Resource, 37, 3253-3262.
[103] Dixit, N. K. (2008). Water Shortage ‘A Global Problem’, PP.33.
Cite This Article
  • APA Style

    Abhijit Panigrahi, Asok Dasmahapatra, Ajit Kumar Medda. (2016). Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.). American Journal of BioScience, 4(5), 64-73. https://doi.org/10.11648/j.ajbio.20160405.12

    Copy | Download

    ACS Style

    Abhijit Panigrahi; Asok Dasmahapatra; Ajit Kumar Medda. Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.). Am. J. BioScience 2016, 4(5), 64-73. doi: 10.11648/j.ajbio.20160405.12

    Copy | Download

    AMA Style

    Abhijit Panigrahi, Asok Dasmahapatra, Ajit Kumar Medda. Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.). Am J BioScience. 2016;4(5):64-73. doi: 10.11648/j.ajbio.20160405.12

    Copy | Download

  • @article{10.11648/j.ajbio.20160405.12,
      author = {Abhijit Panigrahi and Asok Dasmahapatra and Ajit Kumar Medda},
      title = {Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.)},
      journal = {American Journal of BioScience},
      volume = {4},
      number = {5},
      pages = {64-73},
      doi = {10.11648/j.ajbio.20160405.12},
      url = {https://doi.org/10.11648/j.ajbio.20160405.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20160405.12},
      abstract = {Heavy metals of acetate salts of lead, zinc, copper and mercury cause serious toxic effects on protein biosynthesis. These metal salts reduce the plasma protein content. A dose-response relationship is found to occur in this blood parameter in the experimental fish in comparison to the control group of fishes. Both groups are fed. Higher dose of those chemical agents are much responsive to cause harmful effects on fish plasma protein amount. All the heavy metals toxicity except zinc toxicity are shown to be continued (reduced) upto day 42 but the decrease in the said parameter is more marked with zinc salt on day 7 only. The present investigation is an attempt to evaluate the relationship of this haematological parameter with the physiological status among the heavy metal polluted fishes during chronic treatment.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Responsiveness of Total Plasma Protein After Administration of Some Toxic Heavy Metals in an Indian Teleost (Clarias batrachus L.)
    AU  - Abhijit Panigrahi
    AU  - Asok Dasmahapatra
    AU  - Ajit Kumar Medda
    Y1  - 2016/11/15
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajbio.20160405.12
    DO  - 10.11648/j.ajbio.20160405.12
    T2  - American Journal of BioScience
    JF  - American Journal of BioScience
    JO  - American Journal of BioScience
    SP  - 64
    EP  - 73
    PB  - Science Publishing Group
    SN  - 2330-0167
    UR  - https://doi.org/10.11648/j.ajbio.20160405.12
    AB  - Heavy metals of acetate salts of lead, zinc, copper and mercury cause serious toxic effects on protein biosynthesis. These metal salts reduce the plasma protein content. A dose-response relationship is found to occur in this blood parameter in the experimental fish in comparison to the control group of fishes. Both groups are fed. Higher dose of those chemical agents are much responsive to cause harmful effects on fish plasma protein amount. All the heavy metals toxicity except zinc toxicity are shown to be continued (reduced) upto day 42 but the decrease in the said parameter is more marked with zinc salt on day 7 only. The present investigation is an attempt to evaluate the relationship of this haematological parameter with the physiological status among the heavy metal polluted fishes during chronic treatment.
    VL  - 4
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Physiology, Basirhat College, North 24-Parganas, West Bengal, India

  • School of Pharmacy, University of Mississippi, USA

  • Department of Animal Physiology, Bose Institute, Calcutta, India

  • Sections