| Peer-Reviewed

Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field

Received: 2 April 2015     Accepted: 15 April 2015     Published: 27 April 2015
Views:       Downloads:
Abstract

We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density.

Published in American Journal of Modern Physics (Volume 4, Issue 3)
DOI 10.11648/j.ajmp.20150403.12
Page(s) 109-117
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Magnetopolaron, Quantum Dot, Electric Field

References
[1] W. P. Li, J. W. Yin, Y. F. Yu, Z.W. Wang and J.L. Xiao, J. Low Temp. Phys. 160 112(2010)
[2] Y. F. Yu, W.P. Li, J. W. Yin and J.L. Xiao, J. Low Temp. Phys. 50 3322(2011)
[3] Y. J. Wen, J. L. Xiao, Y. F. Yu, Z. W. Wang, Chinese Phys. B 18 446 (2009)
[4] S. Jia-kui, L. Hong-Juan, J. L. Xiao, Physica B 404 1961(2009)
[5] M. A. Nielsen, I. L. Chang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
[6] I. D’Amico, Microelectron. J. 37 1440(2006)
[7] C. H. Bennett, D. P. DiVincenzo, Nature 404 247 (2000)
[8] P. Hawrylak, M. Korkusinski, Solid State Commun 136 508 (2005)
[9] S. D. Sarma, R.D.Sousa, X. D. Hu, B. Koiller , Solid State Commun. 133 737(2005)
[10] M. A. Kastner , Rev. Mod. Phys. 64 849 (1992)
[11] M. W. Dellow, P. H. Beton, C. J.G. M. Langerak, T. J. Foster, P. C. Main, L. Eaves, M. Henini, S. P. Beaumont and C. D. W. Wilkinson, Phys. Rev. Lett.68, 1754 (1992)
[12] S. S. Li and J. B. Xia, Phys. Rev. B 58 3561 (1998)
[13] S. S. Li and J. B. Xia, Appl. Phys. Lett. 87 043102 (2005)
[14] C. Sikorski and U. Merkt, Phys Rev. Lett. 62 2164 (1989)
[15] S.S. Li and J. B. Xia, Phys. Lett. A 366 120 (2007)
[16] A. Lorke, J. P. Kotthaus and K. Ploog, Phys. Rev. Lett. 64 2559(1990)
[17] X.H Qi, X. J. Kong and J.J. Liu, Phys. Rev. B , Condens. Matter 58(16) 10578 (1998)
[18] S. S. Li and J. B. Xia, J. Appl. Phys. 100 083714 (2006)
[19] K. D. Zhu and T. Kobayashi, Solid State Commun. 92 353(1994)
[20] T. C. Au-Yeung, S. L. Kho, S. W. Gu, L. H. Hong and E. M. C. Wong, J. Phys.: Condens. Matter 6 6761 (1994)
[21] S. Sil and A. Chatterjee, J. Phys. Condens. Matter 3 9401(2001)
[22] M. Bhattacharya, A. Chatterjee and T. K. Mitra, Phys. Rev. B 39 8351 (1989)
[23] R. Q. Wang, H. J. Xie and Y. B. Yu, Phys. Stat. Sol. B 242 890 (2005)
[24] B. S. Kandemir and A. Cetin, Phys. Rev. B 65 054303(2002).
[25] S. H. Chen and J.L. Xiao, Int. J. of Mod. Phys. B 22 162611(2008).
[26] J. L. Xiao, J. Low Temp Phys 172 122(2013).
[27] S.S. Li, J. B. Xia, F. H. Yang, Z. C. Niu, S. L. Feng, H. Z. Zheng, J. Appl. Phys. 90 6151(2001)
[28] S. S. Li, L. Gui- Lu, F. S. Bai, S. L. Feng, H. Z. Zheng, Proc. Natl. Acad. Sci. USA 98 11847(2001).
[29] Z. W. Wang, J.L. Xiao, Acta Phys. Sin. 56 678 (2007).
[30] B. S. Kandemir and A. Cetin, J. phys. condens. Matter 17 667(2005).
[31] Y. Lepine and G. Bruneau, J. Phys. Condens. Matter 10 1495(1998).
[32] D. Tolkunov, V. Privman, Phys. Rev. A 69 062309 (2004).
[33] A. Grodecka, P. Machnikowski, Phys. Rev. B 73 125306 (2006).
[34] M. Lovric , H. G. Krojanski, D. Suter, Phys. Rev. A 75 042305 (2007).
Cite This Article
  • APA Style

    Alain Jerve Fotue, Maurice Tiotsop, Nsangou Issofa, Sadem Christian Kenfack, Amos Virngo Wirngo, et al. (2015). Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. American Journal of Modern Physics, 4(3), 109-117. https://doi.org/10.11648/j.ajmp.20150403.12

    Copy | Download

    ACS Style

    Alain Jerve Fotue; Maurice Tiotsop; Nsangou Issofa; Sadem Christian Kenfack; Amos Virngo Wirngo, et al. Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. Am. J. Mod. Phys. 2015, 4(3), 109-117. doi: 10.11648/j.ajmp.20150403.12

    Copy | Download

    AMA Style

    Alain Jerve Fotue, Maurice Tiotsop, Nsangou Issofa, Sadem Christian Kenfack, Amos Virngo Wirngo, et al. Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. Am J Mod Phys. 2015;4(3):109-117. doi: 10.11648/j.ajmp.20150403.12

    Copy | Download

  • @article{10.11648/j.ajmp.20150403.12,
      author = {Alain Jerve Fotue and Maurice Tiotsop and Nsangou Issofa and Sadem Christian Kenfack and Amos Virngo Wirngo and Hilaire Fotsin and Lukong Cornelius Fai},
      title = {Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field},
      journal = {American Journal of Modern Physics},
      volume = {4},
      number = {3},
      pages = {109-117},
      doi = {10.11648/j.ajmp.20150403.12},
      url = {https://doi.org/10.11648/j.ajmp.20150403.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150403.12},
      abstract = {We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field
    AU  - Alain Jerve Fotue
    AU  - Maurice Tiotsop
    AU  - Nsangou Issofa
    AU  - Sadem Christian Kenfack
    AU  - Amos Virngo Wirngo
    AU  - Hilaire Fotsin
    AU  - Lukong Cornelius Fai
    Y1  - 2015/04/27
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajmp.20150403.12
    DO  - 10.11648/j.ajmp.20150403.12
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 109
    EP  - 117
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20150403.12
    AB  - We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Laboratory of Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Sections