| Peer-Reviewed

Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon

Received: 16 July 2014     Accepted: 25 July 2014     Published: 10 August 2014
Views:       Downloads:
Abstract

In this paper, the demand of Low Voltage electricity customers in Cameroon using electricity as an energy source beginning from the period 1975 to 2011 is modeled. This approach aims to study the consumption determinants (macro- economic indicators, demographic indicators and lagged consumption of low voltage electricity) of low Voltage Customers and to analyze those determinants that have a strong influence on consumption. Parameters estimated by EVIEWS 7.2 software for linear and exponential (CooB-Douglas) models were used. The results show that CooB-Douglass models are better than the linear model. It also shows that: (i) the best linear model is a function of delayed consumption〖 C〗_(t-1) ; overall gross domestic product ((〖GDP_g)〗_t) and population (P_t ); (ii) the best model CooB-Douglas is a function of delayed consumption〖 C〗_(t-1) , the global gross domestic product ((〖GDP_g)〗_t) and the number of subscribers (S_t). It noticed that the macroeconomic indicators have a better influence on demographic consumer’s indicators and that the absence of the delayed consumption variable in a model causes autocorrelation of the residuals models.

Published in International Journal of Energy and Power Engineering (Volume 3, Issue 4)
DOI 10.11648/j.ijepe.20140304.13
Page(s) 186-203
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Consumption of Low Voltage Electricity, Linear Regression Models, Macro- Economic Indicators, CooB-Douglass Models, Socio-Economic Parameters, Demographic Indicators, Modeling

References
[1] AES‐SONEL ,2011 Rapport AES/AREVA.
[2] Annuaire statistique 2010 du Cameroun – INS et Document de Stratégie pour la Croissance et l’Emploi- Rapport Définitif – Août 2009.
[3] Development Indicators’ (1960 – 1994) et INS / Comptabilité Nationale (1995 – 2009).
[4] Andrews, Donald W. K. (1993). “Tests for Parameter Instability and Structural Change with Unknown Change Point,” Econometrica, 61(4), 821–856.R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in press.
[5] Bernard, Jean-Thomas, "Un modèle Intégré de la Demande Totale d’Énergie : Application à la Province de Québec" Green, Université Laval, 2000.
[6] Bernard, Jean-Thomas et al., "Quebec Residential Electricity Demand: A Microeconomic Approach",The Canadian Journal of Economics, Vol 29, No 1,1996,92-113.
[7] Bollerslev, Tim, Robert F. Engle and Daniel B. Nelson (1994). “ARCH Models,” Chapter 49 in Robert F.
[8] Breusch, T. S., and A. R. Pagan (1979). “A Simple Test for Heteroskedasticity and Random Coefficient Variation,” Econometrica, 48, 1287–1294.
[9] Brown, R. L., J. Durbin, and J. M. Evans (1975). “Techniques for Testing the Constancy of Regression
[10] Comptabilité Nationale – Annuaires Statistiques INS, MINFI pour PIB nominal et PIB réel (à prix constants).
[11] C. Adjamagbo, P. Ngae, A. Vianou, V. Vignero « Modélisation de la demande en énergie électrique au Togo », Revue des Energies Renouvelables Vol. 14 N°1 (2011) 67 – 83.
[12] Dubin, Jeffrey A., McFadden,Daniel L., "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption ",Econometrica, Vol 52,No2,1984,345-362.
[13] Doornik J.A. et H. Hansen (1994): « A Practical Test for Univariate and Multivariate Normality », Discussion paper, Nuffield College.
[14] Dickey, D.A., Fuller, W.A., (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057–1072.
[15] Engle, R.F., Granger, C.W.J., (1987) Co-integration and error correction: representation estimation and testin. Econometrica 55, 251–276.
[16] Engle, Robert F. and K. F. Kroner (1995). “Multivariate Simultaneous Generalized ARCH,” Econometric Theory, 11, 122-150.
[17] Esseghir Asma et Haouaoui Leila. (2011) « Croissance économique, consommation d’énergie et développement durable : l’exemple de la région méditerranéenne ». Colloque international francophone, « Le développement durable : débats et controverses », 15 et 16 décembre 2011, Université Blaise Pascal, Clermont-Ferrand.
[18] EViews. http://www.eviews.com
[19] Fair, Ray C. (1970). “The Estimation of Simultaneous Equation Models with Lagged Endogenous Variables and First Order Serially Correlated Errors,” Econometrica, 38, 507–516.
[20] Godfrey, L. G. (1988).Specification Tests in Econometrics, Cambridge: Cambridge University Press.
[21] Godfrey, L. G. (1978). “Testing for Multiplicative Heteroscedasticity,” Journal of Econometrics, 8, 227-236.
[22] Godfrey L.G. (1978): « Testing for Higher Order Serial Correlation in Regression Equations when the Regressors Include Lagged Dependent Variables », Econometrica, 46, pp. 1303–1313.
[23] Gaetan Lafrance , «Mathématiques et modélisation énergétique Intégration de l’éolien et prévision de demande dans un réseau électrique » Bulletin AMQ, Vol. XLVII, no3, octobre 2007 – 68 Actes du 50e congrès.
[24] Guertin, Chantal, et al, "Determining Demand for EnergyServices: Investigating income-driven behaviours", State University of New York at Binghamton, 2003.
[25] Hausman, Jerry A., Joskow, Paul l., "Evaluating the Cost and Benefits of Appliance Efficiency Standards",The American Economic Review, Vol 72, No2, 1982.
[26] Issa SACKO (2004) « Analyse Des Liens Entre Croissance Economique Et Consommation D’énergie Au Mali ». MSAS'.
[27] Judge, George G., W. E. Griffiths, R. Carter Hill, Helmut Lütkepohl, and Tsoung-Chao Lee (1985). The Theory and Practice of Econometrics, 2nd edition, New York: John Wiley & Sons.
[28] Krolzig H.-M. ET D.F. Hendry (2001): « Computer Automation of General-to-Specific Model Selection Procedures », Journal of Economic Dynamics and Control, 25 (6-7), pp. 831-866.Nicholls D.F. et A.R.
[29] Pagan (1983): « Heteroscedastici ty in Models with Lagged Dependent Variables », Econometrica, n°51, pp.1233–1242.
[30] Patrice Ongono “Energy consumption and economic performance in Cameroon” MPRA Paper No. 23525, posted 27. June 2010 10:13 UTC.
[31] Reiss, Peter C., White, Matthew W.,"Household Electricity Demand", Stanford University, 2004.
[32] Samuel AMBAPOUR, Christophe MASSAMBA (2005). « Croissance économique et consommation d’énergie au Congo : une analyse en termes de causalité ». DT 12/2005.
[33] SIE-Cameroon, 2010. Cameroon energy information system: Report 2010. Ministry of Energy and Water resources.
[34] R. Starts, EViews Illustrated for Version 7.2, 1st Ed., (2012) Micro Software, LLC, 2012.
[35] White, Halbert (1980).“A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Heteroskedasticity,” Econometrica, 48, 817–838.
[36] Yusri Syam Akil, Hajime Miyauchi. (2013) Seasonal Peak Electricity Demand Characteristics: Japan Case Study. International Journal of Energy and Power Engineering. Vol. 2, No. 3, 2013, pp. 136-142. doi: 10.11648/j.ijepe.20130203.18.
[37] TIMITE E. H. Hassane , Dr.AHOURE Alban.(2010) Consommation d’Électricité et Croissance Économique en Côte d’Ivoire.
[38] Engle and Daniel L. McFadden (eds.), Handbook of Econometrics, Volume 4, Amsterdam: Elsevier Science B.V.
[39] Yris D. Fondja Wandji, (2013) Energy Policy, Energy consumption and economic growth: Evidence from Cameroon, Vol. 61 1295–1304
Cite This Article
  • APA Style

    Flora Isabelle Métégam Fotsing, Donatien Njomo, Réné Tchinda. (2014). Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon. International Journal of Energy and Power Engineering, 3(4), 186-203. https://doi.org/10.11648/j.ijepe.20140304.13

    Copy | Download

    ACS Style

    Flora Isabelle Métégam Fotsing; Donatien Njomo; Réné Tchinda. Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon. Int. J. Energy Power Eng. 2014, 3(4), 186-203. doi: 10.11648/j.ijepe.20140304.13

    Copy | Download

    AMA Style

    Flora Isabelle Métégam Fotsing, Donatien Njomo, Réné Tchinda. Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon. Int J Energy Power Eng. 2014;3(4):186-203. doi: 10.11648/j.ijepe.20140304.13

    Copy | Download

  • @article{10.11648/j.ijepe.20140304.13,
      author = {Flora Isabelle Métégam Fotsing and Donatien Njomo and Réné Tchinda},
      title = {Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon},
      journal = {International Journal of Energy and Power Engineering},
      volume = {3},
      number = {4},
      pages = {186-203},
      doi = {10.11648/j.ijepe.20140304.13},
      url = {https://doi.org/10.11648/j.ijepe.20140304.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepe.20140304.13},
      abstract = {In this paper, the demand of Low Voltage electricity customers in Cameroon using electricity as an energy source beginning from the period 1975 to 2011 is modeled. This approach aims to study the consumption determinants (macro- economic indicators, demographic indicators and lagged consumption of low voltage electricity) of low Voltage Customers and to analyze those determinants that have a strong influence on consumption. Parameters estimated by EVIEWS 7.2 software for linear and exponential (CooB-Douglas) models were used. The results show that CooB-Douglass models are better than the linear model. It also shows that: (i) the best linear model is a function of delayed consumption〖 C〗_(t-1)  ; overall gross domestic product ((〖GDP_g)〗_t) and population (P_t  ); (ii) the best model CooB-Douglas is a function of delayed consumption〖 C〗_(t-1)  , the global gross domestic product ((〖GDP_g)〗_t) and the number of subscribers (S_t). It noticed that the macroeconomic indicators have a better influence on demographic consumer’s indicators and that the absence of the delayed consumption variable in a model causes autocorrelation of the residuals models.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Influence of Socio-Economic Indicators on Electricity Consumption of Low Voltage Customers in Cameroon
    AU  - Flora Isabelle Métégam Fotsing
    AU  - Donatien Njomo
    AU  - Réné Tchinda
    Y1  - 2014/08/10
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ijepe.20140304.13
    DO  - 10.11648/j.ijepe.20140304.13
    T2  - International Journal of Energy and Power Engineering
    JF  - International Journal of Energy and Power Engineering
    JO  - International Journal of Energy and Power Engineering
    SP  - 186
    EP  - 203
    PB  - Science Publishing Group
    SN  - 2326-960X
    UR  - https://doi.org/10.11648/j.ijepe.20140304.13
    AB  - In this paper, the demand of Low Voltage electricity customers in Cameroon using electricity as an energy source beginning from the period 1975 to 2011 is modeled. This approach aims to study the consumption determinants (macro- economic indicators, demographic indicators and lagged consumption of low voltage electricity) of low Voltage Customers and to analyze those determinants that have a strong influence on consumption. Parameters estimated by EVIEWS 7.2 software for linear and exponential (CooB-Douglas) models were used. The results show that CooB-Douglass models are better than the linear model. It also shows that: (i) the best linear model is a function of delayed consumption〖 C〗_(t-1)  ; overall gross domestic product ((〖GDP_g)〗_t) and population (P_t  ); (ii) the best model CooB-Douglas is a function of delayed consumption〖 C〗_(t-1)  , the global gross domestic product ((〖GDP_g)〗_t) and the number of subscribers (S_t). It noticed that the macroeconomic indicators have a better influence on demographic consumer’s indicators and that the absence of the delayed consumption variable in a model causes autocorrelation of the residuals models.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Environmental Energy Technologies Laboratory (EETL), University of Yaounde I, PO Box 812, Yaounde, Cameroon

  • Environmental Energy Technologies Laboratory (EETL), University of Yaounde I, PO Box 812, Yaounde, Cameroon

  • Laboratory of Industrial Systems and Environment of the University of Dschang, PO BOX 96, Dschang, Cameroon

  • Sections