In this paper, we present a design model of permanent magnet generator dedicated to generate renewable energy, taking in account of several systemic and physical constraints. Being couple to a model of the losses of the power chain and to a model of the mass of the generator, this analytic model puts a problem of conjoined optimization of the recovered energy and the cost of the generator. This problem is solved by genetic algorithms method.
Published in |
American Journal of Electrical Power and Energy Systems (Volume 4, Issue 3-1)
This article belongs to the Special Issue Design and Monitoring of Renewable Energy Systems (DMRES) |
DOI | 10.11648/j.epes.s.2015040301.11 |
Page(s) | 1-5 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Renewable Energy, Design, Generator, Converters, Optimization
[1] | Chaithongsuk, S., Nahid-Mobarakeh, B., Caron, J., Takorabet, N., & Meibody-Tabar, F. : Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2484-2494, 2012. |
[2] | Rahman, M. A., Osheiba, A. M., Kurihara, K., Jabbar, M. A., Ping, H. W., Wang, K., & Zubayer, H. M. : Advances on single-phase line-start high efficiency interior permanent magnet motors. Industrial Electronics, IEEE Transactions on, vol 59 no 3, p. 1333-1345, 2012. |
[3] | C.C Hwang, J.J. Chang : Design and analysis of a high power density and high efficiency permanent magnet DC motor, Journal of Magnetism and Magnetic Materials, Volume 209, Number 1, February 2000, pp. 234-236(3)-Publisher: Elsevier. |
[4] | MI. Chunting CHRIS : Analytical design of permanent-magnet traction-drive motors" Magnetics, IEEE Transactions on Volume 42, Issue 7, July 2006 Page(s):1861 - 1866 Digital Object Dentifier 10.1109/TMAG.2006.874511. |
[5] | S.TOUNSI, R.NÉJI, F.SELLAMI : Conception d'un actionneur à aimants permanents pour véhicules électriques, Revue Internationale de Génie Électrique volume 9/6 2006 - pp.693-718. |
[6] | Sid Ali. RANDI : Conception systématique de chaînes de traction synchrones pour véhicule électrique à large gamme de vitesse. Thèse de Doctorat 2003, Institut National Polytechnique de Toulouse, UMRCNRS N° 5828. |
[7] | C. PERTUZA : Contribution à la définition de moteurs à aimants permanents pour un véhicule électrique routier. Thèse de docteur de l’Institut National Polytechnique de Toulouse, Février 1996. |
[8] | S. TounsI, R. NEJI and F. SELLAmI: Mathematical model of the electric vehicle autonomy. ICEM2006 (16th International Conference on Electrical Machines), 2-5 September 2006 Chania-Greece, CD: PTM4-1. |
[9] | R. NEJI, S. TOUNSI, F. SELLAMI: Contribution to the definition of a permanent magnet motor with reduced production cost for the electrical vehicle propulsion. Journal European Transactions on Electrical Power (ETEP), Volume 16, issue 4, 2006, pp. 437-460. |
[10] | P. BASTIANI : Stratégies de commande minimisant les pertes d’un ensemble convertisseur machine alternative : application à la traction électrique. Thèse INSA 01 ISAL 0007, 2001. |
[11] | G. Henriot : Traité théorique et pratique des engrenages : théorie et technologie 1. tome 1 Edition Dunod 1952. |
[12] | D-H. Cho, J-K. Kim, H-K. Jung and C-G. Lee: Optimal design of permanent-magnet motor using autotuning Niching Genetic Algorithm, IEEE Transactions on Magnetics, Vol. 39, No. 3, May 2003. |
[13] | Islam, M. S., Islam, R., & Sebastian, T. : Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications. Industry Applications, IEEE Transactions on, vol 47 no 1, p. 88-95, 2011. |
[14] | Parasiliti, F., Villani, M., Lucidi, S., & Rinaldi, F. : Finite-element-based multiobjective design optimization procedure of interior permanent magnet synchronous motors for wide constant-power region operation. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2503-2514, 2012. |
[15] | Mahmoudi, A., Kahourzade, S., Rahim, N. A., & Ping, H. W. : Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor. Progress In Electromagnetics Research, 124, p. 383-404, 2012. |
[16] | Duan, Y., & Ionel, D. M. : A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. Industry Applications, IEEE Transactions on, vol 49 no 3, p. 1268-1275, 2013. |
[17] | Liu, G., Yang, J., Zhao, W., Ji, J., Chen, Q., & Gong, W. : Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles. Magnetics, IEEE Transactions on, vol 48 no 11, p. 4176-4179, 2012. |
[18] | Lee, S., Kim, K., Cho, S., Jang, J., Lee, T., & Hong, J. : Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. Electric Power Applications, IET, vol 8 no 1, 23-28, 2014. |
[19] | TOUNSI, R. NEJI and F. SELLAMI : Electric vehicle control maximizing the autonomy : 3rd International Conference on Systems, Signal & Devices (SSD’05), SSD-PES 102, 21-24 March 2005, Sousse, Tunisia. |
APA Style
Souhir Tounsi. (2015). Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy. American Journal of Electrical Power and Energy Systems, 4(3-1), 1-5. https://doi.org/10.11648/j.epes.s.2015040301.11
ACS Style
Souhir Tounsi. Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy. Am. J. Electr. Power Energy Syst. 2015, 4(3-1), 1-5. doi: 10.11648/j.epes.s.2015040301.11
AMA Style
Souhir Tounsi. Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy. Am J Electr Power Energy Syst. 2015;4(3-1):1-5. doi: 10.11648/j.epes.s.2015040301.11
@article{10.11648/j.epes.s.2015040301.11, author = {Souhir Tounsi}, title = {Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy}, journal = {American Journal of Electrical Power and Energy Systems}, volume = {4}, number = {3-1}, pages = {1-5}, doi = {10.11648/j.epes.s.2015040301.11}, url = {https://doi.org/10.11648/j.epes.s.2015040301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.epes.s.2015040301.11}, abstract = {In this paper, we present a design model of permanent magnet generator dedicated to generate renewable energy, taking in account of several systemic and physical constraints. Being couple to a model of the losses of the power chain and to a model of the mass of the generator, this analytic model puts a problem of conjoined optimization of the recovered energy and the cost of the generator. This problem is solved by genetic algorithms method.}, year = {2015} }
TY - JOUR T1 - Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy AU - Souhir Tounsi Y1 - 2015/01/19 PY - 2015 N1 - https://doi.org/10.11648/j.epes.s.2015040301.11 DO - 10.11648/j.epes.s.2015040301.11 T2 - American Journal of Electrical Power and Energy Systems JF - American Journal of Electrical Power and Energy Systems JO - American Journal of Electrical Power and Energy Systems SP - 1 EP - 5 PB - Science Publishing Group SN - 2326-9200 UR - https://doi.org/10.11648/j.epes.s.2015040301.11 AB - In this paper, we present a design model of permanent magnet generator dedicated to generate renewable energy, taking in account of several systemic and physical constraints. Being couple to a model of the losses of the power chain and to a model of the mass of the generator, this analytic model puts a problem of conjoined optimization of the recovered energy and the cost of the generator. This problem is solved by genetic algorithms method. VL - 4 IS - 3-1 ER -