The effects of a discrete wavelet-transformation data-preprocessing method on neural-network-based monthly streamflow prediction models in producing energy from small hydro power plants in the Pungwe River basin in Mozambique were investigated. Data from a Vanduzi gauging station in Pungwe River basin were collected. Eight different single-step-ahead monthly stream flow neural prediction models were developed. Coupled simulation involving use of MATLAB and of a Wavelet-Neural Network was employed. Different models were tested using the same sample in each case, an Artificial Neural Network (ANN) being found to performance best. The major objective of the research project was to analyze the monthly stream flow predictions in the Pungwe River, to be able to make as appropriate decisions as possible during dry or wet spells, and also to resolve as effectively as possible conflicts regarding water resourses.
Published in | International Journal of Energy and Power Engineering (Volume 4, Issue 5) |
DOI | 10.11648/j.ijepe.20150405.17 |
Page(s) | 280-286 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Renewable Energy, Hydropower, Wavelet Artificial Neural Network, Monthly Flow Prediction
[1] | EDM ( Electricidad de Mocambique), 2015. Stastitical Summary. www.edm.co.moz. |
[2] | IEA, 2009. IEA Energy Statistics - Energy Balances for Mozambique. Available at: http://www.iea.org/stats/balancetable.asp Accessed May, 2015]. |
[3] | Cuamba B.C., Uthui R. Chenene M.L. et al. (unpubl.) Identification of areas with likely good wind regimes for energy applications in Mozambique. Eduardo Mondlane University, Maputo |
[4] | Santos, C. A. G., Silva, G. B. L., (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Journal des Sciences Hydrologiques, 59 (2) 312–324. |
[5] | Solgi, A., Radmanesh, F., Zarei, H., Nourani, V., (2014), Hybrid Models Performance Assessment to Predict Flow of Gamasyab River International journal of Advanced Biological and Biomedical Research Volume 2, Issue 5, 2014: 1837-1846. |
[6] | O. Kisi.,(2008). “Stream flow forecasting using neuro-wavelet technique,” Hydrological Processes, vol. 22, no. 20, 4142–4152. |
[7] | FUNAE (Fundo de Energia), 2015. Annual Report. www.funae.co.moz. |
[8] | V. Nourani, M. T. Alami, and M. H. Aminfar, (2009), “A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation,” Engineering Applications of Artificial Intelligence, Vol. 22, no. 3, 466–472. |
[9] | Nourani V, Hosseini Baghanam A, Adamowski J, Gebremichael M, (2013), Using self-organizingmaps and wavelet transforms for space–time preprocessing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243. |
[10] | Sreekanth, P., Geethanjali, D.N., Sreedevi, P.D., Ahmed, S., Kumar, N.R., Jayanthi, P.D.K., (2009), Forecasting groundwater level using artificial neural networks. Current Science 96 (7), 933–939. |
[11] | Mohammadi, K., (2008), Groundwater table estimation using MODFLOW and artificial neural networks. Water Science and Technology Library 68 (2), 127– 138. |
[12] | Nourani, V., Hosseini, A., Adamowski, J., Kisi,O, (2014), Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review, Journal of Hydrology 514 , 358–377. |
[13] | Partal, T., Kisi, Ö. (2007), Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Jornal of Hydrology, 342,199-212. |
[14] | Krishna, B.; Satyaji Rao, Y. R., Naya, P.C. (2011) Times Series Modeling of River Flow Using Wavelet Neural Networks, Journal of water resource and protection, 3, 50-59. |
[15] | Nayak P.C., Venkatesh B., Krishna, B., Sharad, K J., (2013) Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology 493 57–67. |
[16] | Rezaeianzadeh, M., Tabari, H, Yazdi, A. A., Isik, S., and Kalin, L. (2014). “Flood flow forecasting using ANN, ANFIS and regression models.” Neural Computing and Applications, Vol. 25, Issue 1, pp. 25-37, DOI: 10.1007/s00521-013-1443-6. |
[17] | Nejad, F. H., and Nourani, V. (2012). “Elevation of wavelet denoising performance via an ANN-based streamflow forecasting model.” International Journal of Computer Science and Management Research, Vol. 1, Issue 4, pp. 764-770. |
[18] | Kisi, O. (2006). “Streamflow forecasting using different artificial neural network algorithms.” Journal of Hydrologic Engineering, Vol. 12, Issue 5, pp. 532-539, DOI: 10.1061/(ASCE)1084-0699(2007)12: 5(532). |
[19] | Kim, T.W., Valdes, J.B., 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 6, 319–328. |
[20] | Nourani, V., Kisi, Ö., Komasi, M., 2011. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. Journal of Hydrology 402, 41–59. |
[21] | Nourani, V., Baghanam, A.H., Adamowski, J., Gebremichael, M., 2013. Using selforganizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. Journal of Hydrology 476, 228–243. |
[22] | Dibike, Y.B., Solomatine, D.P., 2001. River flow forecasting using artificial neural networks. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26, 1–7. |
[23] | Badrzadeh, H., Sarukkalige R., Jayawardena,A.W., 2013. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting. Journal of Hydrology 507,75–85. |
[24] | Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23, 665. |
[25] | Chiu, S., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems 2. |
[26] | Uamusse, M., Persson, K. and Tsamba, A. (2014) Gasification of Cashew Nut Shell Using Gasifier Stovein Mozambique. Journal of Power and Energy Engineering, 2, 11-18. doi: 10.4236/jpee.2014.27002. |
APA Style
Miguel Meque Uamusse, Petro Ndalila, Alberto JúlioTsamba, Frede de Oliveira Carvalho, Kenneth Person. (2015). Monthly Stream Flow Prediction for Small Hydropower Plants in Pungwe River in Mozambique Using the Wavelet Method. International Journal of Energy and Power Engineering, 4(5), 280-286. https://doi.org/10.11648/j.ijepe.20150405.17
ACS Style
Miguel Meque Uamusse; Petro Ndalila; Alberto JúlioTsamba; Frede de Oliveira Carvalho; Kenneth Person. Monthly Stream Flow Prediction for Small Hydropower Plants in Pungwe River in Mozambique Using the Wavelet Method. Int. J. Energy Power Eng. 2015, 4(5), 280-286. doi: 10.11648/j.ijepe.20150405.17
AMA Style
Miguel Meque Uamusse, Petro Ndalila, Alberto JúlioTsamba, Frede de Oliveira Carvalho, Kenneth Person. Monthly Stream Flow Prediction for Small Hydropower Plants in Pungwe River in Mozambique Using the Wavelet Method. Int J Energy Power Eng. 2015;4(5):280-286. doi: 10.11648/j.ijepe.20150405.17
@article{10.11648/j.ijepe.20150405.17, author = {Miguel Meque Uamusse and Petro Ndalila and Alberto JúlioTsamba and Frede de Oliveira Carvalho and Kenneth Person}, title = {Monthly Stream Flow Prediction for Small Hydropower Plants in Pungwe River in Mozambique Using the Wavelet Method}, journal = {International Journal of Energy and Power Engineering}, volume = {4}, number = {5}, pages = {280-286}, doi = {10.11648/j.ijepe.20150405.17}, url = {https://doi.org/10.11648/j.ijepe.20150405.17}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepe.20150405.17}, abstract = {The effects of a discrete wavelet-transformation data-preprocessing method on neural-network-based monthly streamflow prediction models in producing energy from small hydro power plants in the Pungwe River basin in Mozambique were investigated. Data from a Vanduzi gauging station in Pungwe River basin were collected. Eight different single-step-ahead monthly stream flow neural prediction models were developed. Coupled simulation involving use of MATLAB and of a Wavelet-Neural Network was employed. Different models were tested using the same sample in each case, an Artificial Neural Network (ANN) being found to performance best. The major objective of the research project was to analyze the monthly stream flow predictions in the Pungwe River, to be able to make as appropriate decisions as possible during dry or wet spells, and also to resolve as effectively as possible conflicts regarding water resourses.}, year = {2015} }
TY - JOUR T1 - Monthly Stream Flow Prediction for Small Hydropower Plants in Pungwe River in Mozambique Using the Wavelet Method AU - Miguel Meque Uamusse AU - Petro Ndalila AU - Alberto JúlioTsamba AU - Frede de Oliveira Carvalho AU - Kenneth Person Y1 - 2015/10/24 PY - 2015 N1 - https://doi.org/10.11648/j.ijepe.20150405.17 DO - 10.11648/j.ijepe.20150405.17 T2 - International Journal of Energy and Power Engineering JF - International Journal of Energy and Power Engineering JO - International Journal of Energy and Power Engineering SP - 280 EP - 286 PB - Science Publishing Group SN - 2326-960X UR - https://doi.org/10.11648/j.ijepe.20150405.17 AB - The effects of a discrete wavelet-transformation data-preprocessing method on neural-network-based monthly streamflow prediction models in producing energy from small hydro power plants in the Pungwe River basin in Mozambique were investigated. Data from a Vanduzi gauging station in Pungwe River basin were collected. Eight different single-step-ahead monthly stream flow neural prediction models were developed. Coupled simulation involving use of MATLAB and of a Wavelet-Neural Network was employed. Different models were tested using the same sample in each case, an Artificial Neural Network (ANN) being found to performance best. The major objective of the research project was to analyze the monthly stream flow predictions in the Pungwe River, to be able to make as appropriate decisions as possible during dry or wet spells, and also to resolve as effectively as possible conflicts regarding water resourses. VL - 4 IS - 5 ER -