| Peer-Reviewed

The Physics of Mass Gap Problem in the General Field Theory Framework

Received: 27 June 2015     Accepted: 29 June 2015     Published: 7 August 2015
Views:       Downloads:
Abstract

We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.

Published in International Journal of High Energy Physics (Volume 2, Issue 4-1)

This article belongs to the Special Issue Symmetries in Relativity, Quantum Theory, and Unified Theories

DOI 10.11648/j.ijhep.s.2015020401.18
Page(s) 104-111
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Gauge field Theories, Quantum Chromodynamics, Yang-Mills Problem

References
[1] Young.C.N, Mills.R.L 1954 Conservation of isotopic spin and isotopic gauge invariance Phys.Rev. 96 191-195.
[2] Jaffe.A, Witten.E, 2000 Quantum Yang-Mills Theory www.claymath.org/millennium/Yang-MillsTheory/yangmills.pdf.
[3] Creutz.M 1980 Monte Carlo Study of Quantized SU (2) Gauge Theory, Phys. Rev. D21 2308–2315.
[4] Wilson.K.G 1975 Quarks and strings on a lattice, in New Phenomena In Subnuclear Physics, Proceedings of the 1975 International School of Subnuclear Physics, Erice, Sicily, ed. A.Zichichi, Plenum Press, New York .
[5] Wu.N 2003 Gauge Model with Massive Gravitons Preprint hep-th/0307003.
[6] Wu.N”Quantum Gauge Theory of Gravity” 2002 Devision of Particles and Fields Aps Williamsburg, Virgia USA.
[7] Wu.N Gauge Theory of Gravity 2001 Preprint hep-th/0109145.
[8] Wu.N Renormalizable Quantum Gauge Theory of Gravity 2002 Preprint hep-th/0207254.
[9] Wu.N Commun.Theor.Phys 2001 36 169.
[10] .Wu.N Commun.Theor.Phys 2002 38 577-582.
[11] Wu.N Commun.Theor.Phys 2002 38 151-156.
[12] Wu.N 1998 Some discussions on strong interaction Preprint hep-ph/9802297.
[13] Caso.C et al 1998 Particle Data Group, E. Phys. J. C3. 1.
[14] Dokshitzer.Y 1998 Talk presented at XXIXth International Conference on High Energy Physics, ICHEP98, Vancouver, CAS.
[15] Ellis.J, Kunszt.Z, Soper.D 1990 Phys. Rev. Lett. 64. 2121.
[16] Goldstone.J 1961 Nov.Cim.19 154.
[17] Namnu.Y, Lasinio.G.J 1961 Phys.Rev.122 34.
[18] Goldstone.J, Salam.A, Weinberg.S 1962 Phys.Rev.127 965.
[19] Higgs.P.W 1964 Phys.Lett.12 132.
[20] Englert.F, Brout.R 1964 Phys.Lett.13 321.
[21] Guralnik.G.S, Hagen.C.R, Kibble.T.W 1964 Phys.Lett.13 585.
[22] Higgs.P.W 1966 Phys.Rev.145 1156.
[23] Weinberg.S 1973 Phys.Rev.D7 1068.
[24] Yukawa.H 1935 Proc.Physic-Math.Soc.Japan 17, 48.
[25] Tomonaga.S 1946 Prog. of. Theo.Phys .1.2.
[26] Weinberg.S 1971 Gravitational and Cosmology John Wiley and Sons.
[27] Callaway.D,Rahman.A 1982 Microcanonical Ensemble Formulation of Lattice Gauge Theory Physical Review Letters 49: 613–616.
[28] Callaway.D, Rahman .A 1983 Lattice gauge theory in the microcanonical ensemble Physical Review D28: 1506–1514.
[29] Dürr.S, Fodor.Z, Frison.J et al. 2008 Ab Initio Determination of Light Hadron Masses Science 322 5905: 1224.
[30] Bazavov.A et al. 2010 Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks Reviews of Modern Physics 82: 1349–1417.
[31] Kostelecky, V.A, Russell, N. 2010 Data Tables for Lorentz and CPT Violation. Preprint hep-ph/08010287.
[32] Sozzi, M.S 2008 Discrete symmetries and CP violation. Oxford University Press.
[33] Griffiths, David J 1987 Introduction to Elementary Particles. Wiley, John & Sons.
[34] Streater.R.F, Wightman.A.S 1964 PCT, spin and statistics, and all that.Benjamin/Cumming.
[35] [D0 Collaboration], Abbott.B, et al. 1990 Phys. Rev. D 60 031 101.
[36] [D0 Collaboration], Abbott.B, et al 2001 Phys. Rev. D 63 091 102.
[37] Bilaniuk.O.-M. et.al 1962 "'Meta' Relativity" American Journal of Physics 30, 10 71.
[38] Feinberg.G 1967 "Possibility of Faster-Than-Light Particles" Physical Review 159 5, 1089.
[39] Giani.S 1998 On velocities beyond the speed of light c Preprint hep-ph/9712265.
[40] Adam.T et.al [OPERA Collaboraton] 2011 Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Preprint hep-ex /1109.4897.
[41] Koorambas, E, Commun. Theor. Phys. 57 (2), 241-244, (2012), doi: 10.1088/0253-6102/57/2/14.
[42] Koorambas, E, Int J Theor Phys. 51 (10), 3127–3140, (2012), doi: 10.1007/s10773-012-1194-7.
[43] Koorambas.E, Int J Theor Phys 52 (7), 2235-2244, (2013), doi 10.1007/s10773-013-1499-1.
[44] Koorambas.E, Recent Developments in Bosons Research, chapter 2, ed.Ignace Tremblay, pp. 57-82, (Nova Science Publishers, Inc., New York, 2013- May).
[45] Koorambas, E, Int J Theor Phys, 52, (12), 4374–4388 (2013), doi: 10.1007/s10773-013-1756-3
[46] Koorambas,E, Quantum. Matter, 3, (3), 215-218 (2014), doi:10.1166/qm.2014.1115.
[47] Kuzmenko, T.Yu.: In: Proceedings of Institute of Mathematics of NAS of Ukraine 2000, vol. 30, Part 2 pp. 501–506 (2000)
[48] Haywood.S, Symmetries and Conservation Laws in Particle physics 2011, Imperial College Press London UK
[49] Weinberg.S, The Quantum Theory Of Fields Vol.2 1996 Cambridge University Press NY USA
Cite This Article
  • APA Style

    E. Koorambas. (2015). The Physics of Mass Gap Problem in the General Field Theory Framework. International Journal of High Energy Physics, 2(4-1), 104-111. https://doi.org/10.11648/j.ijhep.s.2015020401.18

    Copy | Download

    ACS Style

    E. Koorambas. The Physics of Mass Gap Problem in the General Field Theory Framework. Int. J. High Energy Phys. 2015, 2(4-1), 104-111. doi: 10.11648/j.ijhep.s.2015020401.18

    Copy | Download

    AMA Style

    E. Koorambas. The Physics of Mass Gap Problem in the General Field Theory Framework. Int J High Energy Phys. 2015;2(4-1):104-111. doi: 10.11648/j.ijhep.s.2015020401.18

    Copy | Download

  • @article{10.11648/j.ijhep.s.2015020401.18,
      author = {E. Koorambas},
      title = {The Physics of Mass Gap Problem in the General Field Theory Framework},
      journal = {International Journal of High Energy Physics},
      volume = {2},
      number = {4-1},
      pages = {104-111},
      doi = {10.11648/j.ijhep.s.2015020401.18},
      url = {https://doi.org/10.11648/j.ijhep.s.2015020401.18},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijhep.s.2015020401.18},
      abstract = {We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Physics of Mass Gap Problem in the General Field Theory Framework
    AU  - E. Koorambas
    Y1  - 2015/08/07
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijhep.s.2015020401.18
    DO  - 10.11648/j.ijhep.s.2015020401.18
    T2  - International Journal of High Energy Physics
    JF  - International Journal of High Energy Physics
    JO  - International Journal of High Energy Physics
    SP  - 104
    EP  - 111
    PB  - Science Publishing Group
    SN  - 2376-7448
    UR  - https://doi.org/10.11648/j.ijhep.s.2015020401.18
    AB  - We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.
    VL  - 2
    IS  - 4-1
    ER  - 

    Copy | Download

Author Information
  • Physics Department, National Technical University, Zografou, Athens, Greece

  • Sections