Review Article | | Peer-Reviewed

Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic

Received: 13 September 2023    Accepted: 7 October 2023    Published: 28 October 2023
Views:       Downloads:
Abstract

The effects of processing technologies, fortification with local resources, microbial pathogens and anti-nutrients hindered quality of complementary flours and became harmful for consumption and health. The objectives of this study were aimed to evaluate the sanitary qualities of complementary flours fortified with varieties Moringa oleifera Local (MoL) and Moringa oleifera Periyakulam1 (MoPKM1) and to establish the relationships between the fortification, the thermal treatments and shadow drying, the varieties of Moringa oleifera and the flours quality. The methodology was based on the analyses of microbiological pathogens, anti-nutrients and of ANOVA. The results had shown that fortification with MoL and MoPKM1 had antimicrobial and antifungal effects. The fortified flours FCMPSO, FCMLSO, FCMPCV, FCMLCV, FCMPPV, and FCMLPV were exempt of Escherichia coli, Staphylococcus aureus and Salmonella (0 CFU/g). Also, the total Yeasts and Molds value of 10.63×104 CFU/g for FCT (no fortified) decreased to < 20 CFU/g for FCMPSO and FCMLPV fortified. Moreover, the values of phytates and oxalates were decreased by cooking, precooking, shadow drying and fortification with MoPKM1 and MoL. The variety MoL had higher content of phytates and oxalates while MoPKM1 had higher content of total polyphenols. The fortification with MoPKM1 had decreased the oxalate values from 21.2 µg/100 g for FCT to 11.6; 12.3; 13.1 and 14.7 µg/100 g for FCMPPE, FCMPCV, FCMPSO and FCMPCE respectively. The fortification with MoPKM1 had increased the values of total polyphenols from 89 to 131 µg/100 g respectively for FCT and FCMLCV. Whereas, the total polyphenol values of 131; 129 and 126 µg/100 g for FCMLCV, FCMLPV, FCMLCE fortified with MoL were higher than 91; 98; 100; 112 µg/100 g for FCMPSO, FCMPPE, FCMPCV, FCMPPV fortified with MoPKM1 (p < 0,05) respectively. Steam cooking and precooking preserved polyphenols better than shadow drying and water cooking. The microbiological pathogens and anti-nutritional properties for MoPKM1, MoL and fortified flours FCMPPV, FCMLPV, FCMPSO, and FCMLSO were conformed to sanitary safety standards and safe for human consumption. The varieties MoPKM1 could be used as vectors for quality fortification of complementary flours. Results valorization could enhance food and nutrition security, competitiveness of complementary flours, prevention and fight against anemia, malnutrition and poverty in developing countries.

Published in International Journal of Nutrition and Food Sciences (Volume 12, Issue 5)
DOI 10.11648/j.ijnfs.20231205.13
Page(s) 127-137
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Moringa oleifera Varieties, Thermal Treatments, Shadow Drying, Malnutrition, Complementary Fortified Flours, Sanitary Profiles, Niger

References
[1] Amani, A., Barmo, S., Mayaki, A. (2019). Banque Alimentaire à base de Moringa oleifera Lam par semis direct au Niger. In Recueil des Fiches Techniques, INRAN et PMERSA-MTZ (Eds). Editions Domaine Agro-Sylvo-Pastoral: Niger. 31-34.
[2] CLUSA. (2011). Note sur la variation du prix du Moringa à Maradi. Projet d’Appui au développement de la chaîne de valeur du Moringa au Niger. Ligue des Coopératives des Etats-Unis d’Amérique. NCBA-CLUSA international, USAID, USA.
[3] Magagi, S., Oumarou, D. H., Ibro, G., Kaka, S. et Balla, A. (2022). Perceptions endogènes et utilisations des feuilles de Moringa oleifera en milieu rural de la République du Niger: cas des régions de Tillabéri et de Maradi. Int. J. Biol. Chem. Sci. 16 (5): 2070-2087. ISSN 1997-342X (Online), ISSN 1991-8631.
[4] RECA (2010). Le Moringa, une demande forte, une offre insuffisante. Réseau des Chambres d’Agriculture99 du Niger. Bulletin RECA INFO (Eds), 1 (9).
[5] Alvina, M., Araya, H., Vera, G., Pak, N. (2000). Effect of starch intake on satiation and satiety in preschool children. Nutrition Research, 20 (4): 479-489. DOI: https://doi.org/10.1016/S0271-5317(00)00140-8.
[6] Drewnowski, A, Darmon, N. (2005). Food choices and diet costs: an economic analysis. J. Nutr., 135 (4): 900-904. DOI: 10.1093/jn/135.4.900.
[7] Kumar, H. D. (2004): Management of Nutritional and Health Needs of Malnourished and Vegetarian People in India, Springer US, 311–321. ISBN 978-1-4419-3441-3 DOI 10.1007/978-1-4757-4820-8-23.
[8] Ndong, M., Wade, S., Dossou, N., Guiro, A. T., Diagne, R. G. (2007). Valeur nutritionnelle du Moringa oleifera, étude de la biodisponibilité du fer, effet de l'enrichissement de divers plats traditionnels Sénégalais avec la poudre des feuilles. Afr. J. Food Agric., Nutr. Dev. 3 (7): 1684-5374.
[9] Alidou, C., Salifou, A., Tchobo, F. P., Soumanou, M. M. (2015). Connaissance endogène et utilisations du Moringa oleifera pour les populations autochtones de huit départements du Bénin. Int. J. Innov. Appl. Stud., 13 (2): 316-326. Innov. Space Sci. Res. J. http://www.ijias.issr-journals.org/
[10] De Saint Sauveur, A. et Broin, M. (2010). Produire et transformer les feuilles de Moringa. Moringanews, Moringa Association of Ghana. Editions CTA, CDE, Horizon Gémeno, France, 69p.
[11] Sena, L. P., Vanderjagt, D. J., Rivera, C., Tsin, A. T. C., Muhamadu, I., Mahamadou, O., Millson, M., Pastuszyn, A. et Glew R. H. (1998). Analysis of nutritional components of eight famine foods of the Republic of Niger. Plant. Food. Hum. Nutr. (52), 17–30.
[12] FAO/OMS (2006). Programme mixte FAO/OMS sur les normes alimentaires. Rapport des vingt-septièmes sessions du comité du codex sur la nutrition et les aliments diététiques ou de régime, ALINOM, 1-105.
[13] AFASS (2002). Les fibres alimentaires: définition méthodes de dosage allégations nutritionnelles. Rapport du comité des experts spéciaux Nutrition humaine, 62p.
[14] Guiro, A. T., Galan, P., Cherouvrier, F,, Sall, M. G. (1992): Hercberg S Iron absorption from African pearl-millet and rice meals. Nutr. Res. 11, 885-93.
[15] Hounkpatin, W. (2011). Evaluation du potentiel de couverture des besoins en vitamine A des jeunes enfants à partir des sauces accompagnant les aliments de base consommés au Bénin. Thèse de Doctorat Université Montpellier 2.
[16] UNICEF, IRD, GRET et IRAM (2020). La filière des farines infantiles produites localement dans 6 pays sahéliens: Burkina Faso, Mali, Mauritanie, Niger, Sénégal, Tchad. Rapport de l’étude. 1-164.
[17] Dromigny, E. (2021). Les critères microbiologiques des denrées alimentaires. Réglementation – Agents microbiens –Mise en œuvre – Vulgarisation. 2e édition. Lavoisier TEC et DOC. Lavoisier, Paris ISBN: 978-2-7430-2545-8 editions.Lavoisier.fr. 33-577.
[18] Jasmina, V. et Sadrine, A. (2019). Techniques moléculaires de détection de bactéries d’origine alimentaire. Revue technique de l’ingénieur de l’Institut français pour l’alimentation et l’agriculture 1 (281): 281. https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/analyse-biocapteurs-et-technologies-omiques-42160210/techniques-moleculaires-de-detection-de-bacteries-d-origine-alimentairere.
[19] Cuq, J. L. (2007). Contrôle microbiologique des aliments. Manuel technique, Polytech Département des Sciences et Technologies des Industries Alimentaires, Université Montpellier II, 119p.
[20] LNS, Laboratoire National de Santé (2007). Critères Microbiologiques des Denrées Alimentaires: Lignes Directrices pour L’interprétation. LNS: Luxembourg; 30p.
[21] CAC, Commission du Codex Alimentarius (2013). Lignes directrices pour la mise au point des préparations alimentaires complémentaires destinées aux nourrissons du deuxième âge et aux enfants en bas âge, 1-223.
[22] ISO 6887-V0-010-6 (2013). Microbiologie des aliments. Préparation des échantillons, de la suspension mère et des dilutions décimales en vue de l’examen microbiologique. Partie 6: règles spécifiques pour la préparation des échantillons prélevés au stade de production primaire.
[23] ISO 4833-2 (2013). Microbiologie de la chaîne alimentaire. Méthode horizontale pour le dénombrement des micro-organismes. Partie 2: Comptage des colonies à 30°C par la technique d'ensemencement en surface. 23p.
[24] Chakal, A. et Kadi, N. (2014). Analyse microbiologique et hygiénique des plats cuisinés au niveau du restaurant de la cité Universitaire de SOUMAA Université de Blida I, Faculté des Sciences de la Nature et de la Vie. Département de biologie et physiologie cellulaire Mémoire de Master en Biologie, http://di.univ-blida.dz:8080/jspui/bitstream/123456789/1080/1/pdf
[25] Sally, S. D. (2019). Etude de la qualité microbiologique des repas servis au niveau du centre des œuvres universitaires de Dakar [thèse de Doctorat]. Université Cheikh Anta Diop de Dakar. http://www.beep.ird.fr/collect/eismv/index/assoc/MEM09-18.dir/MEM09-18.pdf
[26] ISO 7251 (2005). Microbiologie des aliments. Méthode horizontale pour la recherche et le dénombrement d'Escherichia coli. 23p.
[27] ISO 6888-2 (2003). Microbiologie des aliments. Directives générales pour le dénombrement de Staphylococcus aureus, pp 101-114.
[28] ISO 6579-1 (2017). Microbiologie de la chaîne alimentaire. Méthode horizontale pour la recherche, le dénombrement et le stéréotypage des Salmonella. 23p.
[29] ISO 21527-1 (2008). Microbiologie des aliments. Méthode horizontale pour le dénombrement des levures et moisissures. 23p.
[30] Yao N’zué, B., Konan, K., Nazo, E., Guetandé-Koné, L., Tano. K. (2020). Caractérisation de quelques légumes-feuilles les plus consommés dans la ville de Daloa (Centre-Ouest, Côte d’Ivoire). Eur. Sci. J., 16 (36), 1-257. https://doi.org/10.19044/esj.
[31] Latta, M. and Eskin, M. (1980). A simple and rapid colorimetric method for phytate determination. J. Agr. Food Chem., 28: 1313-1315.
[32] Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidant substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299: 152-178.
[33] MA/MS, Ministère de l’Agriculture, et Ministère de la Santé (1976). Arrêté français du 1er juillet 1976 relatif aux aliments destinés aux nourrissons et aux enfants en bas âge, Version consolidée au 24 juillet 2019. Journal Officiel Français.
[34] Yang, R. Y., Chang, L. C., Hsu, J. C., Weng, B. B. C., Palada, M. C., Chadha, M. L., Levasseur, V. (2006b). Propriétés nutritionnelles et fonctionnelles des feuilles de Moringa-Du germoplasme, à la plante, à l’aliment et à la santé. Moringa et autres végétaux à fort potentiel nutritionnel: Stratégies, normes et marchés pour un meilleur impact sur la nutrition en Afrique. MoringaNews, Accra, Ghana. 10p.
[35] Assogba, R. B. et Tchobo, F. P. (2013). Effet des paramètres opératoires de la torréfaction sur les facteurs antinutritionnels des feuilles de Moringa oleifera. Université d’Abomey-Calavi (UAC). Rapport pour l’obtention du Diplôme de Licence professionnelle en Technologie Alimentaire. 60p.
[36] Agroconsult Haiti A. (2016). Analyse des Potentialités de l’Exploitation du Moringa en Haïti. Ministère de l’agriculture, des ressources naturelles et du développement rural. Rezo Moringa Doliv Ayiti. Rapport final, 15-202.
[37] Millogo-Koné, H., Kini, B. F., Yougbaré, Z., Yaro, M. B., Sawadogo, M. (2012). Etudes de la photochimie et de l’activité antimicrobienne in vitro des feuilles de Moringa oleifera (Moringaceae). Revue CAMES -Serie Pharm. Med., Trad. Afr. 16.
[38] Bouassria, E., Maissami, W., Amghar, S., Ababou, B., Boukachabine, Kh. (2009). Etude de la flore fongique et bactérienne isolée de certains aliments de bétail de la région de Chaouia et recherche de traces d’aflatoxines. Congrès international: Biotechnologie Microbienne au service du Développement.
[39] Igbedioh, S. O., Olugbemi, K. T., Akpapunam, M. A. (1994). Effects of processing methods on phytic acid level and some constituents in Bambara groundnut (Vigna subterranea) and pigeon pea (Cajanus cajan). Food Chem. 50 (2), 147-151.
[40] Koreissi-Dembélé, Y., Fanou-Fogny, N., Hulshof, P. J. M., Brouwer, I. D. (2013). Fonio (Digitaria exilis) landraces in Mali: Nutrient and phytate content, genetic diversity and effect of processing. J. Food Comp. Anal., 29: 134-143.
[41] Yang, R. Y., Tsou, S. C. S., Lee, T. C., Chang, L. C., Kuo, G., Lai, P. Y. (2006a). Moringa, a novel plant rich in antioxidants, bioavailable iron, and nutrients. In Challenges in Chemistry and Biology of Herbs, Ho CT (Ed.). American Chemical Society: Washington D. C; 224-239.
[42] Zimmermann, M. B. and Hurrell, R. F. (2007). Nutritional iron deficiency. The Lancet, 370 (9586): 511–520.
[43] Elke, K. A. et Zannini, E. (2013). Cereal Grains for the Food and Beverage Industries. 512p.
[44] Mengeneh, I., Ariahu, C. C. (2022). Production and Quality Evaluation of Biscuits from Blends of Wheat, Millet and Sesame Seeds Composites: Functional and Nutrients Characteristics. Int. J. Nutr. Food Sci.. 11 (2), pp. 20-29. doi: 10.11648/j.ijnfs.20221102.12.
[45] Adeniji, T. A, Sanni, L. O, Barimalaa, I. S. and Hart, A. D. (2007). Anti-nutrients and heavy metals in some new plantain and banana cultivars. Nigeria Food J., 25 (2), 165-170.
[46] Chen, D., Kenyon, G. D., Kuhn, D. J., Kazi, A. and Bhuivan, M. (2004). Green tea and tea polyphenols in cancer prevention. Frontiers in Bioscience, (9): 2618.
[47] Laughton, M. J., Evans, P. J., Moroney, M. A., Hoult, J. R., Halliwell, B. (1991). Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem. Pharm., 42 (9): 1673-1681.
[48] Leone, A., Fiorillo, G., Criscuoli, F., Ravasenghi, S., Santagostini, L., Fico, G., Spadafranca, A., Battezzati, A., Schiraldi,. A., Pozzi, F., Lello, S., Filippini, S. and Bertoli, S. (2015): Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti Int. J. Mol. Sci. 16 (8), 18923-18937, doi:10.3390/ijms160818923.
[49] Ndiaye, M., Dieye, A. M., Mariko, F., Grand, A., Sall, D. A., Faye, B. (2002). Contribution à l'étude de l'activité anti-inflammatoire de Moringa oleifera (Moringaceae). Dakar Med. J., 47 (2): 2010-2012.
[50] Nambiar, V. S., Guin, P., Parnami, S., Daniel, M. (2010). Impact of antioxidants from drumstick leaves on the lipid profile of hyperlipidemics. Journal of Herbal Medicine and Toxicology, 4 (1): 165-172.
[51] Stanley, M. A., Beck, J. G. and Swann, A. C. (2003). Antioxidants and the free radical theory of degenerative Disease. Journal consulting and clinic psychology, 71 (2): 309.
[52] Dillard, C. J. (2000). Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agr. 80, 1744–1756.
[53] Siddhuraju P., Becker K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agro-climatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agr. Food Chem., 51: 2144–2155.
Cite This Article
  • APA Style

    Magagi Saidou, Oumarou Diadié Halima, Mani Mamman, Balla Abdourahamane, Adam Toudou. (2023). Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic. International Journal of Nutrition and Food Sciences, 12(5), 127-137. https://doi.org/10.11648/j.ijnfs.20231205.13

    Copy | Download

    ACS Style

    Magagi Saidou; Oumarou Diadié Halima; Mani Mamman; Balla Abdourahamane; Adam Toudou. Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic. Int. J. Nutr. Food Sci. 2023, 12(5), 127-137. doi: 10.11648/j.ijnfs.20231205.13

    Copy | Download

    AMA Style

    Magagi Saidou, Oumarou Diadié Halima, Mani Mamman, Balla Abdourahamane, Adam Toudou. Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic. Int J Nutr Food Sci. 2023;12(5):127-137. doi: 10.11648/j.ijnfs.20231205.13

    Copy | Download

  • @article{10.11648/j.ijnfs.20231205.13,
      author = {Magagi Saidou and Oumarou Diadié Halima and Mani Mamman and Balla Abdourahamane and Adam Toudou},
      title = {Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic},
      journal = {International Journal of Nutrition and Food Sciences},
      volume = {12},
      number = {5},
      pages = {127-137},
      doi = {10.11648/j.ijnfs.20231205.13},
      url = {https://doi.org/10.11648/j.ijnfs.20231205.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20231205.13},
      abstract = {The effects of processing technologies, fortification with local resources, microbial pathogens and anti-nutrients hindered quality of complementary flours and became harmful for consumption and health. The objectives of this study were aimed to evaluate the sanitary qualities of complementary flours fortified with varieties Moringa oleifera Local (MoL) and Moringa oleifera Periyakulam1 (MoPKM1) and to establish the relationships between the fortification, the thermal treatments and shadow drying, the varieties of Moringa oleifera and the flours quality. The methodology was based on the analyses of microbiological pathogens, anti-nutrients and of ANOVA. The results had shown that fortification with MoL and MoPKM1 had antimicrobial and antifungal effects. The fortified flours FCMPSO, FCMLSO, FCMPCV, FCMLCV, FCMPPV, and FCMLPV were exempt of Escherichia coli, Staphylococcus aureus and Salmonella (0 CFU/g). Also, the total Yeasts and Molds value of 10.63×104 CFU/g for FCT (no fortified) decreased to MoPKM1 and MoL. The variety MoL had higher content of phytates and oxalates while MoPKM1 had higher content of total polyphenols. The fortification with MoPKM1 had decreased the oxalate values from 21.2 µg/100 g for FCT to 11.6; 12.3; 13.1 and 14.7 µg/100 g for FCMPPE, FCMPCV, FCMPSO and FCMPCE respectively. The fortification with MoPKM1 had increased the values of total polyphenols from 89 to 131 µg/100 g respectively for FCT and FCMLCV. Whereas, the total polyphenol values of 131; 129 and 126 µg/100 g for FCMLCV, FCMLPV, FCMLCE fortified with MoL were higher than 91; 98; 100; 112 µg/100 g for FCMPSO, FCMPPE, FCMPCV, FCMPPV fortified with MoPKM1 (p  respectively. Steam cooking and precooking preserved polyphenols better than shadow drying and water cooking. The microbiological pathogens and anti-nutritional properties for MoPKM1, MoL and fortified flours FCMPPV, FCMLPV, FCMPSO, and FCMLSO were conformed to sanitary safety standards and safe for human consumption. The varieties MoPKM1 could be used as vectors for quality fortification of complementary flours. Results valorization could enhance food and nutrition security, competitiveness of complementary flours, prevention and fight against anemia, malnutrition and poverty in developing countries.
    },
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Production and Sanitary Profiles Evaluation of Complementary Fortified Flours with Moringa oleifera Lam Varieties Cooked, Precooked and Dried in Niger Republic
    AU  - Magagi Saidou
    AU  - Oumarou Diadié Halima
    AU  - Mani Mamman
    AU  - Balla Abdourahamane
    AU  - Adam Toudou
    Y1  - 2023/10/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijnfs.20231205.13
    DO  - 10.11648/j.ijnfs.20231205.13
    T2  - International Journal of Nutrition and Food Sciences
    JF  - International Journal of Nutrition and Food Sciences
    JO  - International Journal of Nutrition and Food Sciences
    SP  - 127
    EP  - 137
    PB  - Science Publishing Group
    SN  - 2327-2716
    UR  - https://doi.org/10.11648/j.ijnfs.20231205.13
    AB  - The effects of processing technologies, fortification with local resources, microbial pathogens and anti-nutrients hindered quality of complementary flours and became harmful for consumption and health. The objectives of this study were aimed to evaluate the sanitary qualities of complementary flours fortified with varieties Moringa oleifera Local (MoL) and Moringa oleifera Periyakulam1 (MoPKM1) and to establish the relationships between the fortification, the thermal treatments and shadow drying, the varieties of Moringa oleifera and the flours quality. The methodology was based on the analyses of microbiological pathogens, anti-nutrients and of ANOVA. The results had shown that fortification with MoL and MoPKM1 had antimicrobial and antifungal effects. The fortified flours FCMPSO, FCMLSO, FCMPCV, FCMLCV, FCMPPV, and FCMLPV were exempt of Escherichia coli, Staphylococcus aureus and Salmonella (0 CFU/g). Also, the total Yeasts and Molds value of 10.63×104 CFU/g for FCT (no fortified) decreased to MoPKM1 and MoL. The variety MoL had higher content of phytates and oxalates while MoPKM1 had higher content of total polyphenols. The fortification with MoPKM1 had decreased the oxalate values from 21.2 µg/100 g for FCT to 11.6; 12.3; 13.1 and 14.7 µg/100 g for FCMPPE, FCMPCV, FCMPSO and FCMPCE respectively. The fortification with MoPKM1 had increased the values of total polyphenols from 89 to 131 µg/100 g respectively for FCT and FCMLCV. Whereas, the total polyphenol values of 131; 129 and 126 µg/100 g for FCMLCV, FCMLPV, FCMLCE fortified with MoL were higher than 91; 98; 100; 112 µg/100 g for FCMPSO, FCMPPE, FCMPCV, FCMPPV fortified with MoPKM1 (p  respectively. Steam cooking and precooking preserved polyphenols better than shadow drying and water cooking. The microbiological pathogens and anti-nutritional properties for MoPKM1, MoL and fortified flours FCMPPV, FCMLPV, FCMPSO, and FCMLSO were conformed to sanitary safety standards and safe for human consumption. The varieties MoPKM1 could be used as vectors for quality fortification of complementary flours. Results valorization could enhance food and nutrition security, competitiveness of complementary flours, prevention and fight against anemia, malnutrition and poverty in developing countries.
    
    VL  - 12
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Food Technology Laboratory, Department of Pluvial Farming, National Agricultural Research Institute of Niger, Niamey, Niger Republic

  • Department of Crops Production, Faculty of Agronomy, Abdou Moumouni University, Niamey, Niger Republic

  • Department of Animal Production, National Agricultural Research Institute of Niger, Niamey, Niger Republic

  • Department of Crops Production, Faculty of Agronomy, Abdou Moumouni University, Niamey, Niger Republic

  • Department of Crops Production, Faculty of Agronomy, Abdou Moumouni University, Niamey, Niger Republic

  • Sections